
SHERLOCK SECURITY REVIEW FOR

Prepared for: Harpie
Prepared by: Sherlock
Lead Security Expert: leastwood
Dates Audited: September 15 - September 18, 2022
Prepared on: October 12, 2022

https://github.com/0xleastwood

Introduction
Harpie is the first on-chain firewall preventing hacks, scams, and theft. Harpie ser-vices monitor pending transactions for potential attacks.
ScopeThe following contracts in the Harpie Contracts @ 97083d repo are in scope.• Transfer.sol• Vault.sol

FindingsEach issue has an assigned severity:• Medium issues are security vulnerabilities thatmay not be directly exploitable ormay require certain conditions in order to be exploited. All major issues shouldbe addressed.• High issues are directly exploitable security vulnerabilities that need to be fixed.
Total Issues

Medium High9 0
Security Experts

IllIllIak1minhquanymJohnSmithdefsecsirhashalothickuphh3TomoLambdapashov0xNazgulladboy233

0xSmartContractleastwoodHonorLtxiaoming90ccczIEatBabyCarrotscsanuragjainCodingNameKikisach1r0Wazeyixxasgogo

hansfriesedippsaianrbservermillers.planetBnke0x0ChomTomJSm4rtychainNueDravee

1

https://github.com/Harpieio/contracts/tree/97083d7ce8ae9d85e29a139b1e981464ff92b89e
https://github.com/IllIllI000
https://github.com/aktech297
https://github.com/minhquanym
https://github.com/johnsmith1623
https://github.com/defsec
https://github.com/sirhashalot
https://github.com/hickuphh3
https://github.com/Tomosuke0930
https://github.com/OpenCoreCH
https://github.com/pashov
https://github.com/0xNazgul
https://github.com/JEFFCX
https://github.com/0xSmartContract
https://github.com/0xleastwood
https://github.com/pauliax
https://github.com/xiaoming9090
https://github.com/thereksfour
https://github.com/Fluffy9
https://github.com/csanuragjain
https://github.com/CodingNameKiki
https://github.com/sach1r0
https://github.com/calmkidd
https://github.com/yixxas
https://github.com/GeorgiGeorgiev7
https://github.com/hansfriese
https://github.com/Chris-Dipp
https://github.com/saianmk
https://github.com/rbserver
https://github.com/JuanXavier
https://github.com/Bnke0x0
https://github.com/Chomtana
https://github.com/TomJ-BB
https://github.com/Sm4rty-1
https://github.com/chainNue
https://github.com/JustDravee

Issue M-1: Use safeTransferFrom() instead of transferFro
m() for outgoing erc721 transfers
Source: https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/001-M
Found byCodingNameKiki, millers.planet, 0xNazgul, cccz, Bnke0x0, Chom, Waze, IEatBaby-Carrots, TomJ, Tomo, hickuphh3, pashov, sach1r0, Sm4rty, IllIllI, chainNue, Dravee
SummaryIt is recommended to use safeTransferFrom() instead of transferFrom()when trans-ferring ERC721s out of the vault.
Vulnerability DetailThe transferFrom() method is used instead of safeTransferFrom(), which I assumeis a gas-saving measure. I however argue that this isn’t recommended because:• OpenZeppelin’s documentation discourages the use of transferFrom(); use sa

feTransferFrom() whenever possible• The recipient could have logic in the onERC721Received() function, which is onlytriggered in the safeTransferFrom() function and not in transferFrom(). A no-table example of such contracts is the Sudoswap pair:
function onERC721Received(

address,
address,
uint256 id,
bytes memory

) public virtual returns (bytes4) {
IERC721 _nft = nft();
// If it's from the pair's NFT, add the ID to ID set
if (msg.sender == address(_nft)) {

idSet.add(id);
}
return this.onERC721Received.selector;

}

• It helps ensure that the recipient is indeed capable of handling ERC721s.

2

https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/001-M
https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/001-M
https://docs.openzeppelin.com/contracts/4.x/api/token/erc721#IERC721-transferFrom-address-address-uint256-

ImpactWhile unlikely because the recipient is the function caller, there is the potential lossof NFTs should the recipient is unable to handle the sent ERC721s.
Code Snippethttps://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Vault.sol#L137
RecommendationUse safeTransferFrom() when sending out the NFT from the vault.
- IERC721(_erc721Address).transferFrom(address(this), msg.sender, _id);
+ IERC721(_erc721Address).safeTransferFrom(address(this), msg.sender, _id);

Note that the vault would have to inherit the IERC721Receiver contract if the changeis applied to Transfer.sol as well.
Harpie TeamAdded safeTransferFrom in withdraw function. Fix here.
Lead Senior WatsonMakes sense to be compatible with contracts as recipients. Confirmed fix.

3

https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Vault.sol#L137
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Vault.sol#L137
https://github.com/Harpieio/contracts/pull/4/commits/aff1ee38e081194dd7d88835c37c864e759fd289

Issue M-2: Cross-chain replay attacks are possible with
changeRecipientAddress()

Source: https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/004-M
Found byminhquanym, JohnSmith, IllIllI
SummaryMistakes made on one chain can be re-applied to a new chain
Vulnerability DetailThere is no chain.id in the signed data
ImpactIf a user does a changeRecipientAddress() using the wrong network, an attacker canreplay the action on the correct chain, and steal the funds a-la the wintermute gnosissafe attack, where the attacker can create the same address that the user tried to,and steal the funds from there
Code Snippethttps://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Vault.sol#L60-L73
Tool usedManual Review
RecommendationInclude the chain.id in what's hashed
Harpie TeamAdded chainId to signature and signature validation. Fix here.

4

https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/004-M
https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/004-M
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Vault.sol#L60-L73
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Vault.sol#L60-L73
https://github.com/Harpieio/contracts/pull/4/commits/de24a50349ec014163180ba60b5305098f42eb14

Lead Senior WatsonThis is true assuming the contract address is the same across other chains. Con-firmed fix.

5

IssueM-3: Incompatabilitywithdeflationary / fee-on-transfer
tokens
Source: https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/005-M
Found byLambda, cccz, hansfriese, IEatBabyCarrots, rbserver, JohnSmith, minhquanym, Tomo,leastwood, dipp, defsec, HonorLt, IllIllI, saian, csanuragjain
Summaryhttps://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Transfer.sol#L93-L100In case ERC20 token is fee-on-transfer, Vault can loss funds when users withdraw
Vulnerability DetailIn Transfer.transferERC20() function, this function called logIncomingERC20() withthe exact amount used when it called safeTransferFrom(). In case ERC20 token isfee-on-transfer, the actual amount that Vault received may be less than the amountis recorded in logIncomingERC20().The result is when a user withdraws his funds from Vault, Vault can be lost and itmay make unable for later users to withdraw their funds.
Proof of ConceptConsider the scenario1. Token X is fee-on-transfer and it took 10% for each transfer. Alice has 1000token X and Bob has 2000 token X2. Assume that both Alice and Bob are attacked. Harpie transfers all token of Aliceand Bob to Vault. It recorded that the amount stored for token X of Alice is 1000and Bob is 2000. But since token X has 10% fee, Vault only receives 2700 tokenX.3. Now Bob withdraw his funds back. With amountStored=2000, he will transfer2000 token X out of the Vault and received 1800.4. Now the Vault only has 700 token X left and obviously it's unable for Alice towithdraw

6

https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/005-M
https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/005-M
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Transfer.sol#L93-L100
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Transfer.sol#L93-L100

Tool usedManual Review
RecommendationConsider calculating the actual amount Vault received to call logIncomingERC20()Transfer the tokens first and compare pre-/after token balances to compute the ac-tual transferred amount.
Harpie TeamUsing difference in balance in vault rather than token transfer amount. Fix here.
Lead Senior WatsonWhile it's true the fix does allow for compatabiliy with fee-on-transfer tokens, it doesnot correctly handle rebasing tokens. Might be useful to explicily note that rebasingtokens are not supported or instead you could adopt mint shares to represent theownership over the vault's tokens.
Harpie TeamOn rebasing tokens, we just won't be able to support them for now.

7

https://github.com/Harpieio/contracts/pull/4/commits/550065a5e9d625ef93a862bc5f74f140d57998fa

Issue M-4: Usage of deprecated transfer() can result in
revert.
Source: https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/007-M
Found byLambda, cccz, yixxas, Waze, IEatBabyCarrots, pashov, 0xSmartContract, JohnSmith,Tomo, CodingNameKiki, sach1r0, IllIllI, csanuragjain, gogo
SummaryThe function withdrawPayments() is used by the Owners to withdraw the fees.
Vulnerability Detailtransfer() uses a fixed amount of gas, which was used to prevent reentrancy. How-ever this limit your protocol to interact with others contracts that need more thanthat to process the transaction.Specifically, the withdrawal will inevitably fail when: 1.The withdrawer smart contractdoes not implement a payable fallback function. 2.The withdrawer smart contractimplements a payable fallback function which uses more than 2300 gas units. 3.Thewithdrawer smart contract implements a payable fallback function which needs lessthan 2300 gas units but is called through a proxy that raises the call’s gas usageabove 2300.
Impacttransfer() uses a fixed amount of gas, which can result in revert. https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/
Code Snippethttps://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Vault.sol#L159 https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Vault.sol#L156-L160
Tool usedManual Review

8

https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/007-M
https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/007-M
https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/
https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Vault.sol#L159
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Vault.sol#L159
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Vault.sol#L156-L160
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Vault.sol#L156-L160

RecommendationUse call instead of transfer(). Example: (bool succeeded,) = _to.call{value: _amount}("");require(succeeded, "Transfer failed.");
Lead Senior WatsonFair considering recipient may be a contract with custom logic for receive(). But thisis definitely recoverable if the fee recipient wasn't able to receive funds.
Harpie TeamMoved to .call. Fix here.
Lead Senior WatsonConfirmed fix.

9

https://github.com/Harpieio/contracts/pull/4/commits/655834654b5dc1225e9d2fcd2c07b00401aeac3b

Issue M-5: There is no limit on the amount of fee users
have to pay
Source: https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/008-M
Found byhickuphh3, 0xSmartContract, xiaoming90, ak1, minhquanym, leastwood, defsec, Hon-orLt
Summaryhttps://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Transfer.sol#L57 https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Transfer.sol#L88
Vulnerability DetailThere is no upper limit on the amount of fee users have to pay to withdraw theirfunds back. So any EOA can call transfer function on Transfer contract can set anunreasonable amount of fee and users have to pay it if they want their funds back.We need to make sure that users' funds cannot be loss even when the protocol actsmaliciously.
ImpactIn case the protocol acts maliciously and set fee=1e18 to transfer users' fund to Vau
lt, users cannot withdraw their funds since fee is too high.
Proof of ConceptIn both transferERC20() and transferERC721(), EOA is caller and can set fee paramto any value it wants.
function transferERC721(address _ownerAddress, address _erc721Address, uint256

_erc721Id, uint128 _fee) public returns (bool) {,!

require(_transferEOAs[msg.sender] == true || msg.sender == address(this),
"Caller must be an approved caller.");,!

require(_erc721Address != address(this));
(bool transferSuccess, bytes memory transferResult) =

address(_erc721Address).call(,!

abi.encodeCall(IERC721(_erc721Address).transferFrom, (_ownerAddress,
vaultAddress, _erc721Id)),!

);

10

https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/008-M
https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/008-M
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Transfer.sol#L57
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Transfer.sol#L57
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Transfer.sol#L88
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Transfer.sol#L88

require(transferSuccess, string (transferResult));
(bool loggingSuccess, bytes memory loggingResult) =

address(vaultAddress).call(,!

abi.encodeCall(Vault.logIncomingERC721, (_ownerAddress, _erc721Address,
_erc721Id, _fee)),!

);
require(loggingSuccess, string (loggingResult));
emit successfulERC721Transfer(_ownerAddress, _erc721Address, _erc721Id);
return transferSuccess;

}

And users need to send enough fee (native token) to withdraw their fund back on V
ault

function withdrawERC721(address _originalAddress, address _erc721Address, uint256
_id) payable external {,!

require(_recipientAddress[_originalAddress] == msg.sender, "Function caller
is not an authorized recipientAddress.");,!

require(_erc721Address != address(this), "The vault is not a token
address");,!

require(canWithdrawERC721(_originalAddress, _erc721Address, _id),
"Insufficient withdrawal allowance.");,!

require(msg.value >=
_erc721WithdrawalAllowances[_originalAddress][_erc721Address][_id].fee,
"Insufficient payment.");

,!

,!

_erc721WithdrawalAllowances[_originalAddress][_erc721Address][_id].isStored
= false;,!

_erc721WithdrawalAllowances[_originalAddress][_erc721Address][_id].fee = 0;
IERC721(_erc721Address).transferFrom(address(this), msg.sender, _id);

}

Tool usedManual Review
RecommendationConsider adding an upper limit on the amount of fee users need to pay
Lead Senior WatsonCurrently there is no way to revoke a change fee controller request. I'd shy awayfrom using a mapping, adds unnecessary overhead when it can be handled by a pen
dingFeeController variable. Also important to note that mapping in changeFeeContr
oller() is not cleared.

11

Harpie TeamUsing leastwood's suggestion of a timelock for feeController. Fix here. Supplemen-tary fixes for this issue: 1, 2, 3.
Lead Senior WatsonConfirmed fixes.

12

https://github.com/Harpieio/contracts/pull/4/commits/9b75a000f6cb0798e650f1433012b2b52f7a0e2b
https://github.com/Harpieio/contracts/pull/4/commits/c60dc166aab6f7067379ea3f1e39be2ae17cc2dc
https://github.com/Harpieio/contracts/pull/4/commits/ea97548c379ec9b48e42724a52a1ee7bd4cce6b7
https://github.com/Harpieio/contracts/pull/4/commits/8cfc07577c49eb0b0713fb5499ea9313153c2c7c

Issue M-6: Signature malleability not protected against
Source: https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/010-M
Found by0xNazgul, pashov, IllIllI, ladboy233, defsec, sirhashalot
SummaryOpenZeppelin has a vulnerability in versions lower than 4.7.3, which can be exploitedby an attacker. The project uses a vulnerable version
Vulnerability DetailAll of the conditions from the advisory are satisfied: the signature comes in a single
bytes argument, ECDSA.recover() is used, and the signatures themselves are usedfor replay protection checks https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6hIf a user calls changeRecipientAddress(), notices a mistake, then calls changeRecipi
entAddress() again, an attacker can use signature malleability to re-submit the firstchange request, as long as the old request has not expired yet.
ImpactThe wrong, potentially now-malicious, address will be the valid change recipient,which could lead to the loss of funds (e.g. the attacker attacked, the user changedto another compromised address, noticed the issue, then changed to a whole newaccount address, but the attacker was able to change it back andwithdraw the fundsto the unprotected address).
Code Snippethttps://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/package.json#L23
Tool usedManual Review
RecommendationChange to version 4.7.3

13

https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/010-M
https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/010-M
https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h
https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/package.json#L23
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/package.json#L23

Lead Senior WatsonGood find and the fix seems straightforward. Upgrade OZ.
Harpie TeamUpdated openzeppelin NPM package to do ECDSA 4.7.3. Fix here.
Lead Senior WatsonConfirmed fix.

14

https://github.com/Harpieio/contracts/pull/4/commits/74e54edfe43480f71d30acac578627c38366ffa6

Issue M-7: Unsafe casting of user amount from uint256
to uint128
Source: https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/018-M
Found byLambda, Tomo, hickuphh3, IllIllI, defsec, sirhashalot
SummaryThe unsafe casting of the recovered amount from uint256 to uint128 means theusers’ funds will be lost.
Vulnerability Detail
logIncomingERC20() has the recovered amount as type uint256, but amountStored isof type uint128. There is an unsafe casting when incrementing amountStored:
_erc20WithdrawalAllowances[_originalAddress][_erc20Address].amountStored +=

uint128(_amount);,!

It is thus possible for the amount recorded to be less than the actual amount recov-ered.
ImpactLoss of funds.
Proof of ConceptThe user's balance is type(uint128).max=2**128, but the incremented amount will bezero.
Recommendation
amountStored should be of type uint256. Alternatively, use OpenZeppelin’s SafeCast library when casting from uint256 to uint128.
Lead Senior WatsonNot sure, any tokens which would have a token supply over type(uint128).max but Iguess it's best to be proactive. The proposed fix does create some issues. Instead

15

https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/018-M
https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/018-M
https://docs.openzeppelin.com/contracts/4.x/api/utils#SafeCast
https://docs.openzeppelin.com/contracts/4.x/api/utils#SafeCast

of having less tokens transferred to the vault, the contract will revert and preventthe transfer entirely. Arguably more funds would be at risk, so you may as well use u
int256 then or accept the risk and keep the slot packing.
Harpie TeamDecided to accept the risk of reverts on leastwood's comment on this issue since it'sa lot of gas savings and there probably arent useful tokensw/ supply over (uint128).max.Used @openzeppelin/SafeCast. Fix here.
Lead Senior WatsonConfirmed fix.

16

https://github.com/Harpieio/contracts/pull/4/commits/1ff8c0482c690fd44558adb15cb40515623ac5cd

Issue M-8: reduceERC721Fee function can not set fee
when the NFT token ID is more than type(uint128).max
Source: https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/081-M
Found byak1
Summary
reduceERC721Fee function can not set fee when the NFT token ID is more than type(
uint128).max

Vulnerability DetailThe NFT token ID can be any value within uint 256. As the reduceERC721Fee takesthe _id argument as uint128, when the reduceERC721Fee function is called with anNFT id that has above type(uint128).max , the fee can not set to the expected NFTid.
Impact
High: RC721Fee can not set fee when the NFT token ID value is more than type(uin
t128).max

Code Snippethttps://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Vault.sol#L148
Tool usedManual Review
RecommendationChange the function argument for reduceERC721Fee as shown below. beforefix:function reduceERC721Fee(address _originalAddress, address _erc721Address, ui
nt128_id, uint128 _reduceBy) external returns (uint128)
afterfix: function reduceERC721Fee(address _originalAddress, address _erc721Address,
uint256_id, uint128 _reduceBy) external returns (uint128)

17

https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/081-M
https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/081-M
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Vault.sol#L148
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Vault.sol#L148

Lead Senior WatsonGood find! ERC721 standard doesn't enforce how tokenId is implemented for a givenNFT. Could definitely be greater than uint128, although I've never seen a case wherethis is true.
Harpie TeamChanged to uint256. Fix here.
Lead Senior WatsonConfirmed fix.

18

https://github.com/Harpieio/contracts/pull/4/commits/de97103372a8fcd7b45aaa1b21e06ba13b82bbc6

Issue M-9: Nonces not used in signed data
Source: https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/160-M
Found byIllIllI
SummaryNonces are not used in the signature checks
Vulnerability DetailA nonce can prevent an old value from being used when a new value exists. Withoutone, two transactions submitted in one order, can appear in a block in a differentorder
ImpactIf a user is attacked, then tries to change the recipient address to a more secureaddress, initially chooses an insecure compromised one, but immediately noticesthe problem, then re-submits as a different, uncompromised address, a maliciousminer can change the order of the transactions, so the insecure one is the one thatends up taking effect, letting the attacker transfer the funds
Code Snippethttps://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Vault.sol#L67-L71
Tool usedManual Review
RecommendationInclude a nonce in what is signed
Harpie TeamFixed by changing nonce system to an incremental system. Fix here.

19

https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/160-M
https://github.com/sherlock-audit/2022-09-harpie-judging/tree/main/160-M
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Vault.sol#L67-L71
https://github.com/Harpieio/contracts/blob/97083d7ce8ae9d85e29a139b1e981464ff92b89e/contracts/Vault.sol#L67-L71
https://github.com/Harpieio/contracts/pull/4/commits/ee6f5cdf52fa5604d4693331189edff6558c9b8a

Lead Senior WatsonNot an issue AFAIK, miners can't reorder txs unless they are signed with the samenonce. There would have to be some serious mis-use of this function by the recipientaddress, i.e. they would have to ask the server to sign for two different addressesand then broadcast the txs with the same nonce for this call. The proposed fix couldprobably be safely removed but doesn't hurt to keep it there.

20

	Introduction
	Scope
	Findings
	Total Issues
	Security Experts

	Issue M-1:
	Found by
	Vulnerability Detail
	Impact
	Code Snippet
	Recommendation
	Harpie Team
	Lead Senior Watson

	Issue M-2: Mistakes made on one chain can be re-applied to a new chain
	Found by
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Harpie Team
	Lead Senior Watson

	Issue M-3:
	Found by
	Vulnerability Detail
	Proof of Concept
	Tool used
	Recommendation
	Harpie Team
	Lead Senior Watson
	Harpie Team

	Issue M-4: The function withdrawPayments() is used by the Owners to withdraw the fees.
	Found by
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Lead Senior Watson
	Harpie Team
	Lead Senior Watson

	Issue M-5:
	Found by
	Vulnerability Detail
	Impact
	Proof of Concept
	Tool used
	Recommendation
	Lead Senior Watson
	Harpie Team
	Lead Senior Watson

	Issue M-6: OpenZeppelin has a vulnerability in versions lower than 4.7.3, which can be exploited by an attacker. The project uses a vulnerable version
	Found by
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Lead Senior Watson
	Harpie Team
	Lead Senior Watson

	Issue M-7:
	Found by
	Vulnerability Detail
	Impact
	Proof of Concept
	Recommendation
	Lead Senior Watson
	Harpie Team
	Lead Senior Watson

	Issue M-8: function can not set fee when the NFT token ID is more than
	Found by
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Lead Senior Watson
	Harpie Team
	Lead Senior Watson

	Issue M-9: Nonces are not used in the signature checks
	Found by
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Harpie Team
	Lead Senior Watson

